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Abstract
We propose a procedure to solve exactly the Schrödinger equation for a
biexciton composed of two electrons and two holes in a harmonic quantum dot
by using the hyperspherical coordinates. The binding energy of the ground state
has been obtained as a function of the electron–hole mass ratio. Dependence
of the ratio of the binding energy of a biexciton to that of a exciton on the mass
ratio in a quantum dot has been obtained.

1. Introduction

Semiconductor nanocrystals dispersed in a large-band gap matrix can treated as quantum dots
(QD). Three-dimensional (3D) quantum confinement of electrons, holes and excitons make it
possible to observe quantum size effect in QD [1–3]. A biexciton is a system consisting of two
excitons which are bound together. Since the first observation of biexcitons in quantum wells
reported by Miller et al [4], there have been many studies, both experimental and theoretical,
on this subject. From a theoretical point of view, they calculated the binding energy of the
biexciton ground-state in a spherical QD and the oscillator strength as a function of the QD
radius, and the electron–hole mass ratio by using a variational approach [5,6]. Recently, the
effect of exciton localization on the binding energy [7–12] and dephasing of biexcitons [13,14]
have also been studied, both in III–V and II–VI material systems.

Kleinman [15] developed a variational model that gives the Haynes factor, fH =
Exxb /E

x
b = 0.564 which is the ratio between the biexciton-binding energy (Exxb ) and the

exciton-binding energy (Exb ) for σ = 0 (hydrogen limit), 0.15 for σ = 0.68 (GaAs), and 0.14
for σ = 1 (positronium limit) at zero quantum well width. Kleinman identified this ratio with
the Haynes factor [16] of 0.1 in 3D. This theoretical result produced as high a value ofExxb /E

x
b

as predicted by Haynes for 3D biexcitons, therefore Kleinman concluded correctly that the
binding energy of 2D biexcitons has to be larger than that of 3D biexcitons. Several papers
have reported even higher values of the binding energy of quasi-2D biexcitons [17–22]. It is
obvious that the quantum confinement leads to a significant increase in the binding energy of
biexcitons. The aim of the present paper is to investigate the quantum confinement effect on
the binding energy of the biexciton ground-state in a disk-like QD. In experimentally realized
QD, the motion in the z direction is always frozen out into the lowest subband. Since the
corresponding extent of the wave function is much less than the one in the x–y plane, we can
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treat the QD in a disk-like 2D limit. For most QD, the harmonic oscillator is a very good
approximation to describe the lateral confinement.

The hyperspherical approach has been applied to solve bound states and scattering
problems in many different fields of physics and chemistry. Many of the earlier works
dealt with the basic structure of the mathematical functions encountered in hyperspherical
coordinates. In recent years, computational techniques have been developed to perform
accurate calculations in hyperspherical coordinates and the hyperspherical approach provides
a direct and conceptually elegant method for treating problems of three-electron systems [23],
charged-exciton complexes [24] and excitons bound to ionized donors [25].

In this paper, we will propose a procedure to diagonalize the Hamiltonian of a biexciton
in the QD with a parabolic lateral confining potential by using the correlated hyperspherical
harmonics as basis functions. The binding energy of the ground state of a biexciton in 2D
QD subjected to a parabolic confinement is obtained as a function of the electron-to-hole mass
ratio. The ratio of the binding energy of a biexciton to that of a exciton in QD is larger than
those of biexcitons in 2D and 3D semiconductors.

2. Formalism

Let us consider a system of two electrons and two holes moving in the x-y plane subjected
to a parabolic confinement. In our model, we will follow [26] and use the same parabolic
frequency for both holes and electrons but with widely different masses. Furthermore, we
suppose that the effective mass of electrons (holes) in the QD is the same as that in the barrier
materials. With the effective mass approximation, the Hamiltonian for two electrons and two
holes in a disk-like QD reads

H =
4∑
i=1

[
P 2
i

2mi

+
1

2
miω

2r2
i

]
+ Vc (1)

where m1 = m2 = m∗
e and m3 = m4 = m∗

h are the effective masses of particles, �ri and
�pi denote the position vector and the momentum vector of particle i, respectively, and ω is
the strength of the confinement. The interaction between the four particles is modelled by a
Coulombic potential which is screened by a quite phenomenological dielectric constant ε

VC = 1

4πε

(
1

r12
+

1

r34
− 1

r13
− 1

r14
− 1

r23
− 1

r24

)
. (2)

To maintain that the kinetic energy operator is diagonal, we introduce a set of the centre
of mass (c.m.) and Jacobi coordinates to describe the motion of the particles,

�R = m∗
e (�r1 + �r2) +m∗

h(�r3 + �r4)
M

(3)

�ξ1 = �r2 − �r1, �ξ2 = �r4 − �r3 (4)

�ξ3 = [
m∗
h(�r3 + �r4)−m∗

e (�r1 + �r2)
]
/M. (5)

Equation (1) can then be divided into two independent parts

H = Hc.m. +Hrel (6)

with

Hc.m. = P 2
c.m.

2M
+

1

2
Mω2R2

c.m. (7)
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Hrel =
3∑
ν=1

(
p2
ν

2µν
+

1

2
µνω

2ξ 2
ν

)
+ VC (8)

whereHc.m. describes the c.m.motion, Hrel describes the relative motion, M = 2m∗
e + 2m∗

h is
the total mass,

µ1 = m∗
e

2
µ2 = m∗

h

2
µ3 = 2m∗

em
∗
h

m∗
e +m∗

h

are the reduced masses, respectively. The eigenvalues of Hc.m. are obviously the ordinary 2D
harmonic oscillator functions.

Let!LS be the wave function of the state with total orbital-angular momentumL and total
spin-angular momentum S. In this coordinates system, the Schrödinger equation in the c.m.
frame takes the form[

3∑
ν=1

(
p2
ν

2µν
+

1

2
µνω

2ξ 2
ν

)
+ VC − E

]
!LS(�ξ1, �ξ2, �ξ3) = 0. (9)

This particular set of Jacobi coordinates will be referred to as the α-set. There are two other
possible Jacobi coordinates: the β-set where �ξ (β)1 is the vector from 1 to 3, �ξ (β)2 is from 2 to 4
and �ξ (β)3 is from the c.m. of 1 and 3 to the c.m. of 2 and 4; and the γ -set where �ξ (γ )1 is the vector
from 1 to 4, �ξ (γ )2 is from 2 to 3 and �ξ (γ )3 is from the c.m. of 1 and 4 to the c.m. of 2 and 3. These
vectors are depicted in figure 1. The β- and γ -set are similar to those used to describe the
biexciton systems. We also notice that the Schrödinger equation (3) can be written in terms of
the β-set or γ -set Jacobi coordinates as well, with the corresponding reduced masses µ1, µ2

and µ3. The superscripts in the coordinates and reduced masses will not be specified unless
such a distinction is necessary in the discussion.

One can introduce mass-weighted hyperspherical coordinates by defining

�η1 =
√
µ1/µ �ξ1 �η2 =

√
µ2/µ �ξ2 �η3 =

√
µ3/µ �ξ3 (10)

where µ is arbitrary (taken to be unity in general). In terms of �η, the Schrödinger equation (3)
now takes the form[

3∑
i=1

(
− h̄2

2µ
�2
ηi

+
1

2
µω2η2

i

)
+ VC − E

]
!LS(�η1, �η2, �η3) = 0. (11)

Such that the kinetic energy and the confinement potential operators associated with the three
‘particles’ are identical, and the mass dependence of the four particles is cast in the rescaling
of the distances.

From �η, it is straightforward to introduce the hyper-spherical coordinates

η =
√
η2

1 + η2
2 + η2

3 η1 = ηcosφ1 η2 = ηsinφ1cosφ2 η3 = ηsinφ1sinφ2 (12)

where η is the hyper-radius and φ = φ(i)(i = α, β, γ ) is the hyper-angle. We note that the
hyper-radius η is independent of which set of Jacobi coordinates is used. Thus the three vectors
�η1, �η2 and �η3 are replaced by nine coordinates (η,)), where) = (φ1, φ2, θ1, ϕ1, θ2, ϕ2, θ3, ϕ3)

denotes collectively the eight angles, θi and ϕi being the spherical angles of the vector �ηi .
With hyper-spherical coordinates splits, the Schrödinger equation of the relative motion

for the biexciton in a harmonic well is given by[
− h̄2

2µ

(
1

η5

d

dη
η5 d

dη
− ,2())

η2

)
+
C

η
+

1

2
µω2η2 + E

]
!LS(η,)) = 0 (13)
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(a) (b)

(c)

Figure 1. Three sets of Jacobi relative coordinates for a biexciton system

where ,2()) is the grand angular momentum operator, defined by

,2()) = ∂2

∂2φ1
+

[
3

cosφ1

sin φ1
− sin φ1

cosφ1

]
∂

∂φ1
+

1

sin2 φ1

∂2

∂2φ2
+

[
cosφ2

sin φ2
− sin φ2

cosφ2

]
∂

∂φ2

− /2(ϕ1)

cos2 φ1
− /2(ϕ2)

sin2 φ1 cos2 φ2
− /2(ϕ2)

sin2 φ1 sin2 φ2
(14)

where /2(ϕi) = −i∂/∂ϕi , ϕi is the polar angle of �ηi . The eigenvalues and eigenfunctions for
the ,2()) operator are known,

,2())Y[K]()) = λ(λ + 4)Y[K]()) (15)

where

λ = 2m1 + 2m2 + |/1| + |/2| + |/3| (16)

and the eigenfunctions are

Y[K]()) = N/1/2/3
m1m2

P /1/2
m1

(φ1)P
/1/2/3
m1m2

(φ2)e
i/1ϕ1ei/2ϕ2ei/3ϕ3 (17)

where [K] denotes the set of quantum numbers, [K] = (/1, /2, /3,m1,m2), withmi related to
the polynomial functions in angle φi , /1 + /2 + /3 = L is the total orbital angular momentum,
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where N/1/2/3
m1m2

is the normalization constant and P /1/2
m1

(φ1) is a Jacobi polynomial. In the
coordinate α-set, the particle exchange symmetry is automatic, i.e. /1(/2) = odd for spin-
triplet states of two identical particles and /1(/2) = even for spin-single states of two identical
particles.

The grand angular momentum operator does not depend on the Jacobi coordinates

,2()α) = ,2()β) = ,2()γ ) (18)

therefore, the hyper-spherical harmonics in different sets of hyper-angles are simply the
different representations. The eigenfunctions in one set can be expanded in terms of
eigenfunctions of the other set with λ[K] = λ[K ′],

Y[K]()
i) =

∑
[K ′]

B[K],[K ′](η)Y[K ′]()
j ) (19)

whereη depends on the mass ratio of the system, and the expansion coefficients can be evaluated
from

B[K],[K ′](η) =
∫

d)jY ∗
[K]()

i)Y[K]()
j ). (20)

These coefficients are called the transformation bracket and a program for their evaluation
has been published [27]. These transformation brackets are useful when evaluating integrals
involving functions of different sets of Jacobi coordinates. C/η is the total Coulomb interaction
potential among the four charged particles, with C given by

C = e2

ε

[√
µα1

µ

1

cosφα1
+

√
µα2

µ

1

sin φα1 cosφα2
−

√
µ
β

1

µ

1

cosφβ1
−

√
µ
β

2

µ

1

sin φβ1 cosφβ2

−
√
µ
γ

1

µ

1

cosφγ1
−

√
µ
γ

2

µ

1

sin φγ1 cosφγ2

]
. (21)

Since the set of hyper-spherical harmonics forms a complete set on each hyper-spherical
surface, the solution of the Schrödinger equation can be expanded as

!LS =
∑
[K]

R[K](η)Y[K]()). (22)

By projecting out the hyper-spherical harmonics, a set of coupled second-order hyperradial
differential equations is obtained[

− h̄2

2µ

(
1

η5

d

dη
η5 d

dη
− λ[K](λ[K] + 4)

η2

)
+

1

2
µω2η2 − E

]
R[K](η)

−1

η

∑
[K ′]

U[K],[K ′]R[K ′](η) = 0 (23)

where

U[K],[K ′] = 〈Y[K]()) |C|Y[K ′]())〉 (24)

is the matrix element of the effective charge C evaluated between two hyper-spherical
harmonics. Equation (23) can be solved to obtain the eigenvalues if convergence can be
achieved by using a reasonable truncated set of hyper-spherical harmonics.

When C = 0, the eigensolutions of equation (23) satisfying the conventional boundary
condition with a finite R(0) given by

Rnλ(η) = Nnλ

(
η

η0

)λ
Lλ+N−2
n

(
η2

η2
0

)
e−η2/2η2

0 (25)
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whereNnλ is the normalization constant, η2
0 = h̄/(µω), andLλ+N−2

n is a Laguerre polynomial.
The associated eigenvalue is h̄ω(2n + λ + 3), n = 0, 1, 2, . . .. The accuracy of the solutions
depends on how large the model space is. Since we are interested only in the low-lying states
and in the qualitative aspect, the model space adopted is neither very large to facilitate numerical
calculation, nor very small to assure the qualitative accuracy. This is achieved by extending
the dimension of the model space step by step, in each step the new results are compared with
the previous results from a smaller space, until satisfactory convergence is achieved. Our main
interest is the ground state, and consequently, both the total angular momentumL and the total
spin S are zero.

3. Numerical results and discussions

In what follows the energies are in meV, m∗
e = 0.067me (me is the mass of a free electron),

ε = 12.4, which are relevant to GaAs, are adopted in the calculation. The biexciton-binding
energyExxb is defined as the difference between twice the binding energyExb of the ground-state
energy of the exciton and the biexciton ground-state energy Exx that is

Exxb = 2Exb − Exx. (26)

As indicated in table 1, the convergence of the biexciton energy of the ground state is fast with
the number of basic functions. The dependence of Exxb on the electron-to-hole mass ratio σ
for the two values of quantum confinement h̄ω = 0 (solid curve), 0.3 meV (dashed curve)
and 0.5 meV (dotted curve) is plotted in figure 2. We observe that the biexciton confined in
a QD has, in general, a larger binding energy than those in the 3D and 2D semiconductors
[28]. This physical origin is that in semiconductor microstructures of lower dimensionality,
the spatial overlap between an electron and a hole is increased, leading to the increase in
the Coulomb binding energy. As an ultimate limit of the reduced dimensionality, the zero-
dimensional materials such as QD show a much more enhanced binding energy of the biexciton
ground-state. The binding energy increases with the decreasing electron-to-hole mass ratio σ
as expected, i.e. the heavy hole gives rise to larger binding energies than the light hole, and takes
a maximum value at the hydrogen limit (σ = 0) as in the case of bulk materials [29]. Compared
with the binding energies for different confinements, we find that the binding energy depends
strongly on the strength of confinement of QD as a manifestation of the quantum confinement
effect, i.e. the stronger the confinement, the higher the binding energy at the same σ value.

Table 1. The convergence of the biexciton ground-state energies with the number NH of the basic
functions for two values of the confinement in the case of σ = 0.68, h̄ω0 = 0.5Ry∗ and d = 10.0
nm.

NH/h̄ω 0.5 meV 1.0 meV

320 −10.172 −12.735
500 −10.790 −13.460
750 −11.049 −13.803

The Haynes factor fH is the ratio between the biexciton-binding energy and the exciton-
binding energy. Using a very simple model structure, Singh et al obtained fH = Exxb /E

x
b =

0.228 which is independent of σ [21]. However, the results obtained by Liu et al were that fH
ranged from 0.580 to 0.220, which varied with σ in 2D semiconductors [22]. In the present
case, the ratio fH = Exxb /E

x
b is calculated as a function of the electron-hole mass ratio σ

and the result is depicted for h̄ω = 0 (solid curve), 0.3 meV (dashed curve) and 0.5 meV
(dotted curve) in figure 3. Our calculation shows that fH = 0.645 at σ = 0 and fH = 0.202
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Figure 2. Variations of the biexciton binding energies in a QD as a function of the mass ratio
σ = m∗

e/m
∗
h for h̄ω = 0 (solid curve), h̄ω = 0.3 meV (dashed curve) and h̄ω = 0.5 meV (dotted

curve).

Figure 3. Ratio of the biexciton-binding energy to the exciton-binding energy fH = Exxb /E
x
b in a

QD as a function of the mass ratio σ = m∗
e/m

∗
h for h̄ω = 0 (solid curve), h̄ω = 0.3 meV (dashed

curve) and h̄ω = 0.5 meV (dotted curve).

at σ = 1.0 for h̄ω = 0. It is obvious that our result basically agrees with that of [22], i.e.
the fH varies with σ . On the other hand, we also see that qualitatively the zero-dimensional,
two-dimensional and three-dimensional cases behave similarly. Experimentally, we know that
the ratio fH = 0.1 from the Haynes rule for 3D case [16] and about 0.2 for quantum wells [20].
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It is obvious that our calculated result of fH is higher than these experimental values. Hence
this is consistent with the trend that fH increases with decreasing dimension.

Although, to our knowledge, no experimental results involving the biexcitons in QD
have been reported, we hope that our results might be useful in the interpretation of future
experimental data.
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